Adrenomedullin protects rat dorsal root ganglion neurons against doxorubicin-induced toxicity by ameliorating oxidative stress
نویسندگان
چکیده مقاله:
Objective(s): Despite effective anticancer effects, the use of doxorubicin (DOX) is hindered due to its cardio and neurotoxicity. The neuroprotective effect of adrenomedullin (AM) was shown in several studies. The present study aimed to evaluate the possible protective effects of AM against DOX-induced toxicity in dorsal root ganglia (DRGs) neurons. Materials and Methods: Rat embryonic DRG neurons were isolated and cultured. The effect of various concentrations of DOX (0.0 to 100 µM) in the absence or presence of AM (3.125 -100 nM) on cell death, apoptosis, oxidative stress, expression of tumor necrosis-α (TNF-α), interleukin1- β (IL-1β), inducible nitric oxide synthase (iNOS), matrix metalloproteinase (MMP) 3 and 13, and SRY-related protein 9 (SOX9) were examined. Results: Based on MTT assay data, DOX decreased the viability of DRG neurons in a dose and time-dependent manner (IC50=6.88 µm) while dose-dependently, AM protected DRG neurons against DOX-induced cell death. Furthermore, results of annexin V apoptosis assay revealed the protective effects of AM (25 nm) against DOX (6.88 µM)-induced apoptosis and necrosis of DRG neurons. Also, AM significantly ameliorated DOX-induced oxidative stress in DRG neurons. Real-time PCR results showed a significant increase in the expression of TNF-α, IL-1β, iNOS, MMP 3, and MMP 13, and a decrease in the expression of SOX9 following treatment with DOX. Treatment with AM (25 nM) significantly reversed the effects of DOX on the above-mentioned genes expression.Conclusion: Our findings suggest that AM can be considered a novel ameliorating drug against DOX-induced neurotoxicity.
منابع مشابه
Portulaca oleracea protects H9c2 cardiomyocytes against doxorubicin-induced toxicity via regulation of oxidative stress and apoptosis
Abstract Background and Objectives: Doxorubicin as an effective chemotherapeutic agent is frequently used in various cancers. Nowadays, the application of doxorubicin is limited due to its cardiotoxic effects. The important mechanism which is involved in the cardiac injury of doxorubicin is the generation of reactive oxygen species; therefore antioxidant compounds may reduce cardiotoxicity. ...
متن کاملGreen Tea Protects Testes against Atrazine-induced Toxicity in Rat
Background: Atrazine (ATZ) is a common herbicide in agriculture for control of grass and broad-leaved weeds. It persists in the environment and causes reproductive problems in both human and animals. The present study was aimed at protective effect of green tea against ATZ toxicity in the reproductive system of male rats. Methods: The present study was performed in Veterinary School, Shahid ...
متن کاملReversal by ranolazine of doxorubicin-induced prolongation in the inactivation of late sodium current in rat dorsal root ganglion neurons.
متن کامل
PACAP protects cerebellar granule neurons against oxidative stress-induced apoptosis.
Oxidative stress, resulting from accumulation of reactive oxygen species, plays a critical role in neuronal cell death associated with neurodegenerative diseases and stroke. In the present study, we have investigated the potential neuroprotective effect of pituitary adenylate cyclase-activating polypeptide (PACAP) on oxidative stress-induced apoptosis. Incubation of cerebellar granule cells wit...
متن کاملProtective Effect of Captopril against Doxorubicin-Induced Oxidative Stress in Isolated Rat Liver Mitochondria
Doxorubicin (DOX) is an anthracycline antibiotic that has been used for a long time in therapy of an array of human malignancies either alone or in combination with other cytotoxic agents. The dose-dependent cardiotoxicity of DOX significantly limits its anticancer efficacies. Oxidative stress caused by enhanced production of reactive oxygen species is an important contributor to DOX mito...
متن کاملChanges in excitability induced by herpes simplex viruses in rat dorsal root ganglion neurons.
The physiological properties of rat sensory neurons infected with herpes simplex type 1 viruses and maintained in cell culture were studied using intracellular recording techniques. Two syncytial (cell fusing) and two nonsyncytial strains of virus were examined; individual strains of virus had different effects on neuronal excitability. The nonsyncytial viruses caused a loss of tetrodotoxin-sen...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 23 شماره 9
صفحات 1197- 1206
تاریخ انتشار 2020-09-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023